216 research outputs found

    Astroinformatics, data mining and the future of astronomical research

    Get PDF
    Astronomy, as many other scientific disciplines, is facing a true data deluge which is bound to change both the praxis and the methodology of every day research work. The emerging field of astroinformatics, while on the one end appears crucial to face the technological challenges, on the other is opening new exciting perspectives for new astronomical discoveries through the implementation of advanced data mining procedures. The complexity of astronomical data and the variety of scientific problems, however, call for innovative algorithms and methods as well as for an extreme usage of ICT technologies.Comment: To appear in the Proceedings of the 2-nd International Conference on Frontiers on diagnostic technologie

    Mining Knowledge in Astrophysical Massive Data Sets

    Full text link
    Modern scientific data mainly consist of huge datasets gathered by a very large number of techniques and stored in very diversified and often incompatible data repositories. More in general, in the e-science environment, it is considered as a critical and urgent requirement to integrate services across distributed, heterogeneous, dynamic "virtual organizations" formed by different resources within a single enterprise. In the last decade, Astronomy has become an immensely data rich field due to the evolution of detectors (plates to digital to mosaics), telescopes and space instruments. The Virtual Observatory approach consists into the federation under common standards of all astronomical archives available worldwide, as well as data analysis, data mining and data exploration applications. The main drive behind such effort being that once the infrastructure will be completed, it will allow a new type of multi-wavelength, multi-epoch science which can only be barely imagined. Data Mining, or Knowledge Discovery in Databases, while being the main methodology to extract the scientific information contained in such MDS (Massive Data Sets), poses crucial problems since it has to orchestrate complex problems posed by transparent access to different computing environments, scalability of algorithms, reusability of resources, etc. In the present paper we summarize the present status of the MDS in the Virtual Observatory and what is currently done and planned to bring advanced Data Mining methodologies in the case of the DAME (DAta Mining & Exploration) project.Comment: Pages 845-849 1rs International Conference on Frontiers in Diagnostics Technologie

    Automated physical classification in the SDSS DR10. A catalogue of candidate Quasars

    Get PDF
    We discuss whether modern machine learning methods can be used to characterize the physical nature of the large number of objects sampled by the modern multi-band digital surveys. In particular, we applied the MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) method to the optical data of the Sloan Digital Sky Survey - Data Release 10, investigating whether photometric data alone suffice to disentangle different classes of objects as they are defined in the SDSS spectroscopic classification. We discuss three groups of classification problems: (i) the simultaneous classification of galaxies, quasars and stars; (ii) the separation of stars from quasars; (iii) the separation of galaxies with normal spectral energy distribution from those with peculiar spectra, such as starburst or starforming galaxies and AGN. While confirming the difficulty of disentangling AGN from normal galaxies on a photometric basis only, MLPQNA proved to be quite effective in the three-class separation. In disentangling quasars from stars and galaxies, our method achieved an overall efficiency of 91.31% and a QSO class purity of ~95%. The resulting catalogue of candidate quasars/AGNs consists of ~3.6 million objects, of which about half a million are also flagged as robust candidates, and will be made available on CDS VizieR facility.Comment: Accepted for publication by MNRAS, 13 pages, 6 figure

    Data-Rich Astronomy: Mining Sky Surveys with PhotoRApToR

    Full text link
    In the last decade a new generation of telescopes and sensors has allowed the production of a very large amount of data and astronomy has become a data-rich science. New automatic methods largely based on machine learning are needed to cope with such data tsunami. We present some results in the fields of photometric redshifts and galaxy classification, obtained using the MLPQNA algorithm available in the DAMEWARE (Data Mining and Web Application Resource) for the SDSS galaxies (DR9 and DR10). We present PhotoRApToR (Photometric Research Application To Redshift): a Java based desktop application capable to solve regression and classification problems and specialized for photo-z estimation.Comment: proceedings of the IAU Symposium, Vol. 306, Cambridge University Pres

    Photometric redshifts with Quasi Newton Algorithm (MLPQNA). Results in the PHAT1 contest

    Get PDF
    Context. Since the advent of modern multiband digital sky surveys, photometric redshifts (photo-z's) have become relevant if not crucial to many fields of observational cosmology, from the characterization of cosmic structures, to weak and strong lensing. Aims. We describe an application to an astrophysical context, namely the evaluation of photometric redshifts, of MLPQNA, a machine learning method based on Quasi Newton Algorithm. Methods. Theoretical methods for photo-z's evaluation are based on the interpolation of a priori knowledge (spectroscopic redshifts or SED templates) and represent an ideal comparison ground for neural networks based methods. The MultiLayer Perceptron with Quasi Newton learning rule (MLPQNA) described here is a computing effective implementation of Neural Networks for the first time exploited to solve regression problems in the astrophysical context and is offered to the community through the DAMEWARE (DAta Mining & ExplorationWeb Application REsource) infrastructure. Results. The PHAT contest (Hildebrandt et al. 2010) provides a standard dataset to test old and new methods for photometric redshift evaluation and with a set of statistical indicators which allow a straightforward comparison among different methods. The MLPQNA model has been applied on the whole PHAT1 dataset of 1984 objects after an optimization of the model performed by using as training set the 515 available spectroscopic redshifts. When applied to the PHAT1 dataset, MLPQNA obtains the best bias accuracy (0.0006) and very competitive accuracies in terms of scatter (0.056) and outlier percentage (16.3%), scoring as the second most effective empirical method among those which have so far participated to the contest. MLPQNA shows better generalization capabilities than most other empirical methods especially in presence of underpopulated regions of the Knowledge Base.Comment: Accepted for publication in Astronomy & Astrophysics; 9 pages, 2 figure

    PhotoRaptor - Photometric Research Application To Redshifts

    Full text link
    Due to the necessity to evaluate photo-z for a variety of huge sky survey data sets, it seemed important to provide the astronomical community with an instrument able to fill this gap. Besides the problem of moving massive data sets over the network, another critical point is that a great part of astronomical data is stored in private archives that are not fully accessible on line. So, in order to evaluate photo-z it is needed a desktop application that can be downloaded and used by everyone locally, i.e. on his own personal computer or more in general within the local intranet hosted by a data center. The name chosen for the application is PhotoRApToR, i.e. Photometric Research Application To Redshift (Cavuoti et al. 2015, 2014; Brescia 2014b). It embeds a machine learning algorithm and special tools dedicated to preand post-processing data. The ML model is the MLPQNA (Multi Layer Perceptron trained by the Quasi Newton Algorithm), which has been revealed particularly powerful for the photo-z calculation on the base of a spectroscopic sample (Cavuoti et al. 2012; Brescia et al. 2013, 2014a; Biviano et al. 2013). The PhotoRApToR program package is available, for different platforms, at the official website (http://dame.dsf.unina.it/dame_photoz.html#photoraptor).Comment: User Manual of the PhotoRaptor tool, 54 pages. arXiv admin note: substantial text overlap with arXiv:1501.0650

    Photometric redshift estimation based on data mining with PhotoRApToR

    Get PDF
    Photometric redshifts (photo-z) are crucial to the scientific exploitation of modern panchromatic digital surveys. In this paper we present PhotoRApToR (Photometric Research Application To Redshift): a Java/C++ based desktop application capable to solve non-linear regression and multi-variate classification problems, in particular specialized for photo-z estimation. It embeds a machine learning algorithm, namely a multilayer neural network trained by the Quasi Newton learning rule, and special tools dedicated to pre- and postprocessing data. PhotoRApToR has been successfully tested on several scientific cases. The application is available for free download from the DAME Program web site.Comment: To appear on Experimental Astronomy, Springer, 20 pages, 15 figure

    Stellar formation rates in galaxies using Machine Learning models

    Get PDF
    Global Stellar Formation Rates or SFRs are crucial to constrain theories of galaxy formation and evolution. SFR's are usually estimated via spectroscopic observations which require too much previous telescope time and therefore cannot match the needs of modern precision cosmology. We therefore propose a novel method to estimate SFRs for large samples of galaxies using a variety of supervised ML models.Comment: ESANN 2018 - Proceedings, ISBN-13 978287587048

    Genetic Algorithm Modeling with GPU Parallel Computing Technology

    Get PDF
    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU / CUDA parallel computing technology. The model was derived from a multi-core CPU serial implementation, named GAME, already scientifically successfully tested and validated on astrophysical massive data classification problems, through a web application resource (DAMEWARE), specialized in data mining based on Machine Learning paradigms. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm has provided an exploit of the internal training features of the model, permitting a strong optimization in terms of processing performances and scalability.Comment: 11 pages, 2 figures, refereed proceedings; Neural Nets and Surroundings, Proceedings of 22nd Italian Workshop on Neural Nets, WIRN 2012; Smart Innovation, Systems and Technologies, Vol. 19, Springe

    Probability density estimation of photometric redshifts based on machine learning

    Get PDF
    Photometric redshifts (photo-z's) provide an alternative way to estimate the distances of large samples of galaxies and are therefore crucial to a large variety of cosmological problems. Among the various methods proposed over the years, supervised machine learning (ML) methods capable to interpolate the knowledge gained by means of spectroscopical data have proven to be very effective. METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts) is a novel method designed to provide a reliable PDF (Probability density Function) of the error distribution of photometric redshifts predicted by ML methods. The method is implemented as a modular workflow, whose internal engine for photo-z estimation makes use of the MLPQNA neural network (Multi Layer Perceptron with Quasi Newton learning rule), with the possibility to easily replace the specific machine learning model chosen to predict photo-z's. After a short description of the software, we present a summary of results on public galaxy data (Sloan Digital Sky Survey - Data Release 9) and a comparison with a completely different method based on Spectral Energy Distribution (SED) template fitting.Comment: 2016 IEEE Symposium Series on Computational Intelligence, SSCI 2016 784995
    • …
    corecore